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ABSTRACT
In this work we present an approach for human activity recogni-
tion which is based on skeletal motion, i.e., the motion of skeletal
joints in the 3D space. More specifically, we propose the use of 4
well-known image transformations (i.e., DFT, FFT, DCT, DST) on
images that are created based on the skeletal motion. This way,
we create “activity” images which are then used to train four deep
convolutional neural networks. These networks are then used for
feature extraction. The extracted features are fused, scaled and upon
a dimensionality reduction step they are given as input to a support
vector machine for classification. We evaluate our approach using
two well-known, publicly available, challenging datasets and we
demonstrate the superiority of the fusion approach.
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• Computing methodologies→ Activity recognition and un-
derstanding; Neural networks.
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1 INTRODUCTION
Human activity recognition (HAR) is one of the most challenging
problems in the area of computer vision and pattern recognition.
Nowadays, several HAR-based applications exist, such as daily life
monitoring, visual surveillance, assisted living, human-machine
interaction, affective computing, augmented/virtual reality (AR/VR)
etc. In this paper, we build upon our previous work [13] and propose
the fusion of several visual representations of human actions, based
on well-known 2D image transformations. More specifically, we use
the Discrete Fourier Transform (DFT), the Fast Fourier Transform
(FFT), the Discrete Cosine Transform (DCT) and the Discrete Sine
Transform (DST). First, we create raw signal images which capture
the 3D motion of human skeletal joints over space and time. Then,
one of the aforementioned transformations is applied into each of
the signal images, resulting to an “activity” image, which captures
the spectral properties of signal images. For each image transforma-
tion category, we use a trained deep convolutional neural network
(CNN) architecture for feature extraction. The extracted features
are fused and then are used as input to a support vector machine
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(SVM), for classification. We evaluate the proposed approach using
the challenging PKU-MMD [10] and NTU RGB+D [11] datasets and
present results for single-view, cross-view and cross-subject cases.

The rest of this paper is organized as follows: section 2 presents
related work, focusing on fusion of visual representations of hu-
man skeletal motion. Next, Section 3 presents the proposed feature
extraction and fusion methodology. Experiments and results are
presented in Section 4, while conclusions are drawn in Section 5,
wherein plans for future work are also presented.

2 RELATEDWORK
In recent years, several research works using image representa-
tions of skeletal data have been presented. Chen et al. [5] encoded
spatial-temporal information into color texture images from skele-
ton sequences, referred to as Temporal Pyramid Skeleton Motion
Maps (TPSMMs). The TPSMMs not only capture short temporal
information but also embed the long dynamic information over
the period of action. They evaluated their method on three distinct
datasets. Experimental results showed that the proposed method
can effectively utilize the spatio-temporal information of skele-
ton data. Silva et al. [14] mapped the temporal and spatial joints
dynamics into a color image-based representation, wherein, the
position of the joints in the final image is clustered into groups.
In order to verify whether the sequence of the joints in the final
image representation can influence the performance of the model,
they conducted two experiments: in the former, they changed the
order of the grouped joints in the sequence, while in the latter,
the joints were randomly ordered. Tasnim et al. [16] proposed a
spatio-temporal image formation (STIF) technique of 3D skeleton
joints by capturing spatial information and temporal changes for
action discrimination. To generate the spatio-temporal image, they
mapped all the 20 joints in a frame with the same color, using
the jet color map and then changed the colors as time was pass-
ing. Finally, they created the STIF, by connecting lines between
joints in adjacent frames, subsequently. Huynh et al. [8] proposed a
novel encoding technique, namely Pose-Transition Feature to Image
(PoT2I), to transform skeleton information to image-based repre-
sentation for deep convolutional neural networks (CNNs). This
technique includes feature extraction, feature arrangement, and
action image generation processes. The spatial joint correlations
and temporal pose dynamics of action are exhaustively depicted
by an encoded color image. Verma et al. [17] created skeleton in-
tensity images, for 3 views (top, front and side) using a proposed
algorithm from skeleton data. Caetano et al. [3] introduced a novel
skeleton image representation, named SkeleMotion. The proposed
approach encodes the temporal dynamics by explicitly computing
the magnitude and orientation values of the skeleton joints. Differ-
ent temporal scales were employed to compute motion values to
aggregate more temporal dynamics to the representation making it
able to capture long-range joint interactions involved in actions as
well as filtering noisy motion values.

Moreover, several approaches dealing with the fusion of sev-
eral representations have been proposed. Basly et al. [2] combined
deep learning methods with traditional classifier hand-crafted fea-
tures extractors. For feature extraction, they used a pre-trained
CNN approach-based residual neural network (ResNet) model. The

resulting feature vector was then fed as an input to an SVM clas-
sifier. Similarly, Koutrintzes et al. [9] used hand-crafted features
and combined them with deep features. For classification, they also
used an SVM. Karen et al. [15] trained two spatial and temporal
CNNs. The softmax scores for each model were combined with
a late fusion approach, i.e., by training a multi-class linear SVM.
Ehatisham-Ul-Haq et al. [7] proposed a multimodal feature-level fu-
sion approach for robust human action recognition. Their features
include densely extracted histogram of oriented gradient (HOG)
features from RGB/depth videos and statistical signal attributes
from wearable sensors data. K-nearest neighbor and support vector
machine classifiers were used for training and testing the proposed
fusion model for HAR. Chaaraoui et al. [4] combined body poses
estimation and 2D shape, in order to improve human action recog-
nition. Using efficient feature extraction techniques, skeletal and
silhouette-based features low-dimensional, real-time features were
obtained. These two features were then combined by means of fea-
ture fusion. Finally, in previous work [18] we presented an approach
for the recognition of human activity that combined handcrafted
features from 3D skeletal data and contextual features learned by a
trained deep CNN. To validate our idea, we trained a CNN using a
dataset for action recognition and use the output of the last fully-
connected layer as a contextual feature extractor. Then, an SVM
was trained upon an early fusion step of both features.

3 PROPOSED METHODOLOGY
The proposed methodology is illustrated in Fig. 1. At the follow-
ing, we present in detail all its steps, from sensor data to the final
classification result.

3.1 Skeletal Information
The proposed approach requires as input 3D trajectories of skeletal
joints during an activity. The data we are using have been captured
using the Microsoft Kinect v2 sensor. More specifically, these data
consist of 25 human joints (i.e., their x , y and z coordinates, over
time). Considering each joint as an 1-D signal, 75 such signals result
for any given video sequence. Each joint corresponds to a body part
such as head, shoulder, knee, etc., while edges connect these joints
shaping the body structure. For each of these joint we construct
a “signal” image, by concatenating the aforementioned 75 signals.
Note that the duration of these signals may vary, since different ac-
tions may require different amounts of time. Also different persons
or even the same one may perform the same action with similar,
yet not equal duration. To address the problem of temporal vari-
ability between actions and between users, we set the duration of
all videos equal to 159 frames, upon imposing a linear interpolation
step. This way, the size of signal and activity images remains fixed
and equal to 159 × 75.

3.2 Activity Image Construction
Based on our previous work [13] we create activity images upon
applying onto the signal images the following well-known image
transformations: a) the 2-D Discrete Fourier Transform (DFT); b)
the 2-D Fast Fourier Transform (FFT); c) the 2-D Discrete Cosine
Transform (DCT); and d) the 2-D Discrete Sine Transform (DST).
We consider a segmented recognition problem, i.e., we assume
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Figure 1: A visual overview of the proposed approach.

that each segment contains exactly one action to be recognized.
Then, we train a CNN for each of the 4 image transformations.
After the training of the network, we extract the features from
the images using the above models and we fuse them. These fused
features are then scaled and upon principal component analysis
(PCA) their dimension is reduced. This reduced vector is then used
for classification with an SVM classifier.

3.3 Network Architecture
The architecture of the proposed CNN is presented in detail in Fig.
2. The first convolutional layer filters the 159 × 75 input activity
image with 32 kernels of size 3×3. The first pooling layer uses “max-
pooling” to perform 2 × 2 subsampling. The second convolutional
layer filters the 78× 36 resulting image with 64 kernels of size 3× 3.
A second pooling layer uses “max-pooling” to perform 2 × 2 sub-
sampling. A third convolutional layer filters the 38 × 17 resulting
image with 128 kernels of size 3 × 3. A third pooling layer uses
“max-pooling” to perform 2 × 2 sub-sampling. Then, a flatten layer
transforms the output image of size 18 × 17 of the last pooling to a
vector, which is then used as input to a dense layer using dropout.
Finally, a second dense layer produces the output of the network.
Note that this layer is omitted when the network is used as feature
extractor.

4 EXPERIMENTAL RESULTS
4.1 Datasets
For the experimental evaluation of the proposed approach we
used two publicly available, large scale, challenging motion ac-
tivity datasets. More specifically, NTU RGB+D [11] is a large scale
benchmark dataset for 3D Human Activity Analysis. RGB, depth,
infrared and skeleton videos for each performed action have been
also recorded using the Kinect v2 sensor. They collected data from
106 distinct subjects and they managed to record more than 114
thousand video samples and 8M frames for three camera angles.
This dataset contains 120 different action classes including daily,
mutual, and health-related activities. PKU-MMD [10] is a large-
scale benchmark focusing on human action understanding and
containing approx. 20K action instances from 51 categories, span-
ning into 5.4M video frames. 66 human subjects have participated
in the data collection process, while each action has been recorded
by 3 camera angles, using the Microsoft Kinect v2 camera. For each
action example, raw RGB video sequences, depth sequences, in-
frared radiation sequences and extracted 3D positions of skeletons
are provided.

4.2 Experimental Setup and Network Training
The experiments were performed on a personal workstation with an
IntelTMi7 5820K 12 core processor on 3.30 GHz and 16 GB RAM, us-
ing NVIDIATM Geforce RTX 2060 GPU with 8 GB RAM and Ubuntu
20.04 (64 bit). The deep CNN architecture has been implemented
in Python, using Keras [6] with the Tensorflow [1] backend. We
split the data for training, validation and testing as it is proposed
from the datasets’ authors [10, 11]. For the training of the network,
we used batch size 8 for 150 epochs. For the SVM configuration we
used the RBF kernel, with γ = 0.001 and C = 100. To evaluate our
method, in case of the PKU-MMD dataset we used the augmented
set of samples that we have created in the context of our previous
work [12], wherein we augmented the data with four angles, i.e.,
±45◦,±90◦. In case of the NTU-RGB+D dataset, due to a plethora
of camera positions that had been used, we omitted the augmenta-
tion step, as it was experimentally proved that it caused a drop of
performance.

4.3 Results
For the evaluation of the proposed fusion approach we performed
three types of experiments: First, we performed experiments per
camera position (single view) in this case both training and testing
sets derived from the same viewpoint. Secondly, we performed
cross-view experiments, where different viewpoints were used for
training and for testing. And finally, in the third experiment, we
performed cross-subject experiments, where subjects were split into
training and testing groups. In Tables 1 and 2, we present the results
for the PKU-MMD and the NTU-RGB+D dataset, respectively. As
it may be observed, in all cases the fusion approach leads to a
significant increase of accuracy, thus we may assume that the four
image transformations may capture complementary features of
human motion.

5 CONCLUSIONS AND FUTUREWORK
In this paper we presented a fusion approach to the problem of
human activity recognition. Our approach was based on image
transformations that have been applied on signal image. Convolu-
tional neural networks have been used as feature extractors, while a
support vector machine has been used for classification of the fused
features. We experimentally demonstrated that the proposed fu-
sion approach outperforms previous work based on a single image
transformation. Thus, all transformations capture complementary
features.
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Figure 2: The CNN architecture that has been used in this work; “conv” denotes a convolutional layer, “fc” denotes a fully-
connected layer.

Train Test DFT FFT DCT DST F

CV

LR M 0.75 0.76 0.85 0.84 0.92
LM R 0.70 0.69 0.70 0.79 0.86
RM L 0.68 0.69 0.78 0.62 0.86
M L 0.64 0.63 0.68 0.74 0.85
M R 0.63 0.62 0.76 0.64 0.85
R L 0.58 0.58 0.66 0.46 0.78
R M 0.67 0.65 0.78 0.66 0.87
L R 0.58 0.59 0.40 0.64 0.74
L M 0.66 0.66 0.67 0.73 0.86

CS LRM LRM 0.70 0.69 0.79 0.79 0.85

SV
L L 0.62 0.60 0.75 0.72 0.83
R R 0.62 0.61 0.75 0.72 0.82
M M 0.65 0.66 0.79 0.75 0.85

Table 1: Experimental results for the PKU-MMD dataset.
Numbers denote accuracy, L, R and M denote left, right and
middle camera position. Best result per case is indicated by
bold. CV, CS and SV correspond to cross-view, cross-subject
and single-view, respectively. F denotes the fusion of DFT,
FFT, DCT, DST.

A possible application of this work in AR environments so as to
measure user experience and assess user engagement. For example,
within a museum environment, the detection of a visitor making
a phone call while interacting with an AR application could be
an indicator of low engagement. In contrast, when the visitor is
reading in front of an AR screen, this could be an indicator of high
engagement. Among our plans for future work are to investigate
other deep architectures and fusion techniques and test our method
with novel representations capturing motion properties of several
modalities. Finally, we would like to perform evaluation using sev-
eral other datasets and also perform real-life experiments within
the AR environment of the Mon Repo project1.

1https://monrepo.online/

Train Test DFT FFT DCT DST F

CV

LR M 0.47 0.48 0.44 0.45 0.62
LM R 0.44 0.45 0.42 0.42 0.56
RM L 0.53 0.54 0.52 0.51 0.70
M L 0.38 0.38 0.30 0.30 0.43
M R 0.47 0.47 0.38 0.39 0.59
R L 0.43 0.45 0.31 0.34 0.53
R M 0.37 0.38 0.28 0.30 0.45
L R 0.43 0.43 0.34 0.36 0.53
L M 0.44 0.45 0.37 0.40 0.57

CS LRM LRM 0.50 0.51 0.52 0.52 0.68

SV
L L 0.48 0.49 0.48 0.50 0.67
R R 0.43 0.44 0.40 0.42 0.60
M M 0.45 0.44 0.48 0.45 0.65

Table 2: Experimental results for the NTU-RGB+D dataset.
Numbers denote accuracy, L, R and M denote left, right and
middle camera position. Best result per case is indicated by
bold. CV, CS and SV correspond to cross-view, cross-subject
and single-view, respectively. F denotes the fusion of DFT,
FFT, DCT, DST.
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