
Implementation and study of user strategies within a custom
video game environment

Nick, Iliadis
Department of Informatics, Ionian

University
p14ilia@ionio.gr

Stergios, M, Palamas
Department of Regional Development,

Ionian University
spalamas@ionio.gr

Phivos, I., Mylonas∗∗
Department of Informatics, Ionian

University
fmylonas@ionio.gr

ABSTRACT
∗The quality of the gameplay of a computer game is one of the
most important factors for its success. Even the best game visuals
(graphics) can not compensate for a bad gameplay. In this context,
the difficulty of the game is an important factor for the overall gam-
ing experience. Dynamically adjusting the difficulty to the player’s
skills can provide a more personalized and challenging playing
environment. The present study suggests an implementation of a
Dynamical Difficulty Adjustment mechanism, integrated in a First
Person Shooter developed from scratch with Unreal Engine 4. The
mechanism is based on an extensive set of user statistics/metrics
collected during the game and processed with data-mining tech-
niques, in order to rate user’s skills and performance on every stage
of the game. The rating is then used, to automatically adjust a set
of gameplay parameters and behaviors for the next part of the
game, providing a custom-tailored difficulty level that matches the
player’s skills.

CCS CONCEPTS
• Interactive Games; • Personalization; • User centered de-
sign;

KEYWORDS
Artificial Intelligence, video games, user behavior, skill level

ACM Reference Format:
Nick, Iliadis, Stergios, M, Palamas, and Phivos, I., Mylonas∗. 2021. Im-
plementation and study of user strategies within a custom video game
environment. In 25th Pan-Hellenic Conference on Informatics (PCI 2021),
November 26–28, 2021, Volos, Greece. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3503823.3503832

1 INTRODUCTION
Modern game development tools, like the popular Unreal Engine,
have made possible the development of modern, state-of-the art
games, even by small working teams, lacking the resources and

∗Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PCI 2021, November 26–28, 2021, Volos, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9555-7/21/11. . . $15.00
https://doi.org/10.1145/3503823.3503832

budget of big Game Studios. The gameplay is one of the most im-
portant parts of a digital game, judging in a large extend it’s market
success or failure. Even the best game visuals cannot compensate
for a bad gameplay. In this context, game difficulty is an important
factor of the gaming experience. Making a game too difficult to
play will discourage many players, while in contrary, a very easy
game will hardly provide any challenge for users to keep playing on.
Csikszentmihalyi [1] first proposed that players, when kept away
from the two opposite states of boredom and frustration, experience
a “flow channel”.

Difficulty adjustment is integrated on virtually every digital
game, often in its most simple form: a predefined set of difficulty
levels, adjusting some of the gameplay parameters without taking
into account player’s performance [2]. Dynamic Difficulty Adjust-
ment (DDA) on the other hand, automatically and constantly modi-
fies a game’s difficulty level in order to match the player’s in-game
performance, providing thus a custom-tailored and challenging
user experience.

There are several approaches to DDA implementation [3]: Prob-
abilistic Methods, Single and multi-layered perceptions, Dynamic
Scripting, Hamlet System, Reinforcement Learning, Upper Confi-
dence Bound for Trees and AI Neural Networks and Self-organizing
System and AI Neural Networks.

This study, building upon the principles of the Hamlet System
[4] and Reinforcement Learning [5] [6] DDA approaches, suggests a
method for dynamic difficulty adjustment of a First Person Shooter
(FPS) game developed from scratch with Unreal Engine 4. The ad-
justing mechanism is based on the maintenance of an extensive
set of user-statistics and metrics during the game, which, by uti-
lizing data-mining techniques, are used to rate player’s skills on
every stage/part of the game and alter crucial gameplay parame-
ters for the next stage of the game, matching the player’s overall
performance.

2 GAMEPLAY AND GAME ELEMENTS
The game was designed and implemented as a First Person Shooter
(FPS), with additional characteristics of a survival game, adopting
movement and shooting mechanics featured by popular games
of this specific genre. Typical elements of the FPS game genre
have been incorporated, such as a variety of guns (pistol, assault
rifle, shotgun, grenade launcher and sniper), a health system, an
energy system, a flashlight, the enemies and a dark environment.
The player, throughout the game, must fight to maintain health,
energy and battery (flashlight) levels, having a constant feeling of
struggling to survive.

The player’s health level can reach up to one hundred. The
energy regains when the user is standing still and decays while the

https://doi.org/10.1145/3503823.3503832
https://doi.org/10.1145/3503823.3503832

PCI 2021, November 26–28, 2021, Volos, Greece Nick Iliadis et al.

Figure 1: Health, energy, battery bars

Figure 2: Health, energy, battery collectable items

Figure 3: Flash Drive

Figure 4: Structure of the game - map

player is moving. Running decreases the energy twice as fast. The
battery (used by the flashlight) decreases while the player keeps
the flashlight on and recharges (very slowly) when the flashlight is
off. There are health, energy and battery packs, scattered across the
game scene, which, when collected by the player, instantly increase
the corresponding levels of resources.

The player’s main mission is to survive throughout the game,
eliminating enemies (bots), while trying to collect 20 flash drives.
The later are the key item of the game and finding them all, is the
only way to open the main gate to game completion.

The game is structured in a way that ensures the player cannot
miss a track or use fewer resources, hindering the validity of the data
collected throughout the game and described later. The player must
kill the enemies while collecting the flash drives, while keeping an
eye on his energy, health and battery levels. Equally important for
surviving the game, is the player’s bullet stock. The structure of
the game-map (stage) is shown in Figure 4

The game scene is divided into 3 areas, and features two check-
points (appearing in blue in Figure 4). User cannot proceed from

area to area and finish the game, without first collecting the appro-
priate number of flash drives on each section.

While playing on each area, a set of variables (described later), is
used to collect user-statistics and determine user’s skills and tactics,
adjusting accordingly the behavior of next area’s enemies/bots in
order to provide a more challenging level of difficulty.

When it comes to guns, there are five different types of weapons
players can use.

Each weapon induces different amount of damage on enemies.
Specifically:

1. The pistol does 40 units basic damage.
2. The assault rifle does 30 units basic damage.
3. The shotgun does 60 units basic damage.
4. The grenade launcher does 100 units basic damage.
5. The sniper does 100 units basic damage.

There are two different types of enemies that can hurt the player
and both of them can kill the player if they aren’t eliminated. The
artificial intelligence (AI) of the game uses two different attacking
mechanisms:

• The first one focuses on running towards player’s location
(short-range attack).

• The second one locates the player’s position and deals dam-
age by firing against him with a weapon (long-range attack).

Both types of bots can “sense” the player’s presence, if the player
fires a weapon close to them, and can “see” the player up to 82
ft away (2500 units in Unreal Engine 4) within a 90° angle view
area. All enemies start with 100 health points and a basic health
regeneration rate of 0.4 health points/second when being hurt by
the player. The walking speed of the bots is 4 km/h (400 units/h in
Unreal Engine 4).

Each bot, can deal a different amount of damage to the player.
The normal bot (close range attack) can deal up to 20 units damage
per attack (meaning that the player is capable to survive up to five
consecutive attacks). On the other hand, the weapon bot (long range
attack) can deal up to 3 units of damage per fired bullet, provided
of course the bullet doesn’t miss the target, and thus, the player
can survive up to 34 successful shots.

3 DATA COLLECTION
When the game reached at the stage of development where we
could collect the desired variables, we decided to put some users to
play the game. The results were considered valid when the players
were able to finish the first, the second track or the whole game.
Failed attempts were excluded for the validity of our measurements.
Measurements were made at the end of the game, at the two check-
points or when the user chose (provided the user had reached at
least the first checkpoint).

The variables/metrics collected during the testing phase of the
game, are the following:

Weapon related variables:

• Total bullets used (total amount of bullets used by the player)
• Total bullets on target (total amount of bullets that hit the
target/enemy)

Implementation and study of user strategies within a custom video game environment PCI 2021, November 26–28, 2021, Volos, Greece

Figure 5: Available weapons: pistol, assault rifle, shotgun, grenade launcher and sniper

Figure 6: Close-range attacking bots (2 Skins/types) and Long-range attacking bot (featuring weapon).

• Pistol bullets used (total amount of pistol bullets used by the
player)

• Pistol bullets on target (total amount of pistol bullets that
hit the target/enemy)

• Assault Rifle bullets used (total amount of assault rifle bullets
used)

• Assault Rifle bullets on target (total amount of assault rifle
bullets that hit the target/enemy)

• Shotgun bullets used (total amount of shotgun bullets used)
• Shotgun bullets on target (total amount of shotgun bullets
that hit the target/enemy)

• Grenade Launcher bullets used (total amount of rockets of
the grenade launcher used)

• Grenade Launcher bullets on target (total amount of grenade
launcher rockets that hit the target/enemy)

• Sniper bullets used (total amount of sniper bullets used)
• Sniper bullets on target (total amount of sniper bullets that
hit the target/enemy)

Time variables:
• Time Spent Aiming (aiming time)
• Time Spent Sprinting (time running)

• Time Spent Crouching (crouching time)
• Time Spent Playing (total playing time)
• Time to reach the First Checkpoint (First Bridge)
• Time to reach the Second Checkpoint (2nd Bridge)
• Time to reach the Third Checkpoint (End of Game)

General variables:

• Footsteps (steps made in the game)
• Bots Killed (enemies killed)
• Damage Taken (damage done by enemies)

Accuracy variables:

• Accuracy (General Bullets on target x 100 / Total Bullets
Used)

• Accuracy Grade1 (Bots killed / Total Bullets Used)
• Total Bullets Missed (how many bullets did not hit the en-
emy)

• Pistol Bullets Missed (how many bullets of the pistol have
missed target)

1The Accuracy Grade variable was used to measure players’ accuracy; fewer bullets
per killed bot indicate more headshots.

PCI 2021, November 26–28, 2021, Volos, Greece Nick Iliadis et al.

• Assault Rifle Bullets Missed (how many assault rifle bullets
have missed target)

• Shotgun Bullets Missed (how many bullets of the shotgun
have missed target)

• Grenade Launcher Bullets Missed (how many rockets of the
grenade launcher have missed target)

• Sniper Bullets Missed (how many sniper bullets have missed
target)

• Total Headshots (howmany times the player has hit the head
of the enemy)

• Pistol Headshots (how many times the player has hit the
head of the enemy with a pistol)

• Assault Rifle Headshots (how many times the player has hit
the head of the enemy with an assault rifle)

• Grenade Launcher Headshots (how many times the player
has hit the head of the enemy with a grenade launcher)

• Sniper Headshots (how many times the player has hit the
head of the enemy with a sniper)

4 DATA ANALYSIS & VISUALIZATION
The data collected by the users playing the game were analyzed by
utilizing the popular Weka tool2. Weka is a collection of machine
learning algorithms for data mining operations. It includes tools
for data pre-processing, sorting, regression, clustering, association
rules, and visualization. In particular, version 3.8.2 was used to
provide a tangible visualization of the collected data and to create a
training dataset. Initially, the data were imported in Weka and were
classified using the J48 algorithm. The classification resulted in a
trained machine learning model (.model), outlining the variables
with the highest impact, specifically:

• Accuracy
• Time Playing
• Damage Taken
• Accuracy Grade

Then we considered the model that came out as a test one and
by utilizing the "supplied test set" and "cross-validation folds 10"
Weka functionalities, we conducted a classification of the users who
played our game in the following 5 categories/skill-levels:

• Very Bad (VB)
• Bad (B)
• Normal (N)
• Good (G)
• Very Good (VG)

The data collected by the players during the evaluation phase,
were divided in two categories: those collected in the 1st part3 of
the game (1st area) and those collected in the 2nd part4 of the game
(2nd area).

4.1 DECISION TABLES
Decision tables are a visual representation of actions to be per-
formed according to given parameters. In our case, two decision

2https://www.cs.waikato.ac.nz/ml/weka/
3https://docs.google.com/spreadsheets/d/1wHjbzMx5OrI1tk3rCXWR7fqMnJcT48vcVp3hR-
uz1P4/edit?usp=sharing
4https://docs.google.com/spreadsheets/d/1AE03hzFVZSm0brs1527lO83vCtdQpmi-
Lei46XF7BYs/edit?usp=sharing

tables were created, one for each area/part of the game. The two
decision tables (Table 1, Table 2) illustrate how the combined range
of values from the 4 variables/metrics, are used to classify the player
in one of the five defined skill-levels.

4.2 UNREAL ENGINE VISUALIZATION
Once the rules that would define the behavior were produced, they
had to be displayed within the Unreal Engine. We first implemented
the rules in pseudocode and then passed them to the graphics
engine. In other words, the transfer of data from the decision table
to the actual code was first implemented in pseudocode and then
transferred to the unreal engine.

Above pseudocode was then transferred to the Unreal Engine. As
mentioned above we have a categorization of the player who plays
the game into four categories. Regarding the first category, i.e., that
of the very bad player we have the following implementation in
code in the Unreal Engine graphics machine:

5 EVALUATION
The variables were weightened, so players can not fall into more
than one categories/ratings at the same time:

• “Accuracy” got a weight of 1, as the most important variable.
• “Damage Taken” got a weight of 0.75.
• “Time Playing” got a weight of 0.2, and finally
• “Accuracy Grade” got a weight of 0.1.

In this way, e.g., if a player performs very well on Damage Taken,
Time Playing, and Accuracy Grade can be rated above a player who
has very good Accuracy. Players having a total score greater than
1, are then classified in one of the 5 skill-levels (Very Bad, Bad,
Medium, Good, Very Good).

By combining the collected user-statistics and the decision tables
on the Weka tool, the following (Table3 and Table 4) clustering of
the test-users has emerged for each game area.

The player’s total skill-rating (Very Bad, Bad, Medium, Good,
Very Good), is finally used by the game, in order to fine-tune specific
gameplay parameters/variables, adjusting the overall game diffi-
culty to user’s skills and providing a more challenging/personalized
experience. The adjusted game variables/parameters are:

Player-related parameters:
1. Health Range of the player.
2. Energy Decay (how fast the player is getting tired)
3. Energy Regeneration (how fast the player’s energy is regen-

erating when resting)
4. Flashlight Decrease Rate (how fast the batteries discharge)
5. Flashlight Increase Rate (how fast the batteries recharge

when flash-light is off)
Weapons-related parameters:
1. Pistol Damage (How much damage the gun does)
2. Assault Rifle Damage (How much damage the rifle does)
3. Damage to huntingweapons (howmuch damage the shotgun

does)
4. Grenade Launcher Damage (How much damage the grenade

launcher does)
5. Sniper Damage (How much damage the player’s sniper

weapon does)

https://www.cs.waikato.ac.nz/ml/weka/
https://docs.google.com/spreadsheets/d/1wHjbzMx5OrI1tk3rCXWR7fqMnJcT48vcVp3hR-uz1P4/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1wHjbzMx5OrI1tk3rCXWR7fqMnJcT48vcVp3hR-uz1P4/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1AE03hzFVZSm0brs1527lO83vCtdQpmi-Lei46XF7BYs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1AE03hzFVZSm0brs1527lO83vCtdQpmi-Lei46XF7BYs/edit?usp=sharing

Implementation and study of user strategies within a custom video game environment PCI 2021, November 26–28, 2021, Volos, Greece

Table 1: Decision table Area One

Damage Taken Accuracy Accuracy Grade Total Time Playing PlayerIS

114 -∞ 0 - 20 0 - 0.2 365 -∞ VB
94 - 113 21 - 40 0.21 - 0.4 325 - 364 B
74 - 93 41 - 60 0.41 - 0.6 285 - 324 M
54 - 73 61 - 80 0.61 - 0.8 245 - 284 G
0 - 53 81 - 100 0.81 - 1 0 – 244 VG

Table 2: Decision table Area Two

Damage Taken Accuracy Accuracy Grade Total Time Playing PlayerIS

232 -∞ 0 - 20 0 - 0.2 903 -∞ VB
212 - 231 21 - 40 0.21 - 0.4 803- 902 B
192 - 211 41 - 60 0.41 - 0.6 703 - 802 M
172 - 191 61 - 80 0.61 - 0.8 603 - 702 G
0 - 171 81 - 100 0.81 - 1 0 – 602 VG

Figure 7: Pseudocode used for the first area (first player categorization).

Table 3: Clustering of the users on Area One

Damage Taken Accuracy Accuracy Grade Total Time Playing PlayerIS

57 26 0.1185 431 B
102 77 0.5185 326 G
130 35 0.2903 277 B
171 39 0.2708 524 B
56 65 0.4 281 G
73 36 0.2608 195 B
58 29 0.2702 197 B
93 37 0.2888 271 B
9 61 0.3888 117 G
94 72 0.4827 249 G
99 72 0.5454 252 G
117 74 0.5185 321 G
42 36 0.3469 397 B
150 29 0.1392 539 VB
68 71 0.5714 304 G

PCI 2021, November 26–28, 2021, Volos, Greece Nick Iliadis et al.

Figure 8: Very bad player categorization visualization within the Unreal Engine environment.

Table 4: Clustering of the users on Area Two

Damage Taken Accuracy Accuracy Grade Total Time Playing PlayerIS

216 28 0.1361 1004 B
242 64 0.4561 686 G
132 47 0.3595 773 M
221 71 0.5869 551 G
216 28 0.1361 1004 B

Artificial Intelligence - related variables:

1. LOSHearing Threshold (the range that that bots are “listen-
ing” for player’s presence)

2. Hearing Threshold (bots’ “hearing” ability)
3. Sight Radius (how long the bots can visually detect the

player)
4. Damage to Player by Normal Bot (how much damage the

normal bots induce to player per attack)
5. Damage to Player by Weapon Bot (how much damage the

bots with weapons induce to player per attack)
6. Moving Speed (how fast the bots move)
7. Bot Health (how much total life the bots have)
8. Bot Health Regenerate (how fast do the bots regain health

when not attacked by the player)

Track-related variables:
Light Control (changes the intensity of lights on the track)

6 SCOREBOARDING
Whenever the player finishes a section (area) of the game, or the
whole game, information is provided on the skill/rating and the

Figure 9: Player’s grade on the first area

resulting adjustment of the game’s difficulty level for the rest of
the game.

Specifically, when the player has completed the 1st part of the
game (area 1), a message appears on the screen informing the player
that the game has been customized to match player’s skills, while
the calculated grade is displayed on the upper right corner (Figure
7).

At this point, the game-code adjusts accordingly all the gameplay
parameters mentioned on section 6 for the next area. When the
player successfully completes the second part of the game, the
whole process is repeated and the player is informed accordingly
on the new and the previous skill rating (Figure 8).

Implementation and study of user strategies within a custom video game environment PCI 2021, November 26–28, 2021, Volos, Greece

Figure 10: Player’s grade on the second area

Figure 11: Player’s scoreboard

Figure 12: Player’s statistics

When a player finishes playing either by successfully completing
the game or failing to do so (e.g. by getting killed), a scorecard
database is maintained and displayed. The total score is calculated
by the player’s performance on Accuracy, Accuracy Grade, Playing
Time and Damage Taken. The player has also access to the user
statistics/metrics registered throughout the gaming time.

7 FUTUREWORKS
Ideas for future improvements are focused more on the game Arti-
ficial Intelligence rather than new game features:

• Optimizing how the Artificial Intelligence reacts to player’s
skills

• More extensive gameplay fine-tuning in response to user’s
rating

• Maintenance of user metrics/scores on the Cloud rather than
locally.

Enemy bots could by programmed to hide away when the
player is at distance and, depending on the player’s active weapon
and ranking, they could seek cover behind buildings or other ob-
jects/structures for protection. A behavior tree could also be utilized
so bots behave accordingly to user’s state, e.g. when the player is
vulnerable (low healht/energy) the bots can attack, while search for

a cover when player’s resources are high. Ideally, when the player
is ranked as very good, bots should behave like controlled by other
human players.

Regarding gameplay fine-tuning in response to user’s skills, side-
levels could be created, transferring good players to challenging
environments, while game-adjusted gates, could close specific paths
to skilled players, forcing them to seek new ways to proceed.

Finally, cloud-based maintenance of the scores and the users’
metrics, could create a more competitive and challenging environ-
ment for the players.

8 CONCLUSION
Many games utilize a common, fixed, mechanism on adjusting the
overall difficulty level and how the game reacts to the player. This
can often lead to an excessively difficult game that will discourage
players, or a very easy one, that most players won’t find challenging
at all. By utilizing in-game player statistics/metrics, and analyzing
them with data mining / machine learning techniques, the game
can self-adjust a variety of gameplay parameters to match user’s
skills and performance on every part of the game, providing a far
more custom-tailored and challenging experience to the player.

ACKNOWLEDGMENTS
This research was co-financed by the European Union and Greek
national funds through the Competitiveness, Entrepreneurship and
Innovation Operational Programme, under the Call "Special Ac-
tions "Aquaculture" - "Industrial materials" - "Open innovation in
culture""; project title: "Strengthening User Experience & Cultural
Innovation through Experiential Knowledge Enhancement with En-
hanced Reality Technologies — MON REPO"; project code: T6ϒBΠ -
00303; MIS code: 5066856

REFERENCES
[1] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience, Harper Row,

NewYork, NY,USA, 2009.
[2] R. Koster, A theory of fun for game design. Sebastopol (Cali.), OReilly Media,

2014.
[3] Mohammad Zohaib, Dynamic Difficulty Adjustment (DDA) in Computer Games:

A Review, Advances in Human-Computer Interaction, Volume 2018, Article ID
5681652, 12 pages, November 2018

[4] R. Hunicke and V. Chapman, “AI for Dynamic Difficulty Adjustment in Games,”
in Proceedings of the Challenges in Game Artificial Intelligence AAAIWorkshop,
pp. 91–96, San Jose,Calif, USA, 2004.

[5] J. Hagelback and S. J. Johansson, “Measuring player experience on runtime
dynamic difficulty scaling in an RTS game,” in Proceedings of the 2009 IEEE
Symposium on Computational Intelligence and Games (CIG), pp. 46–52,Milano,
Italy, September 2009.

[6] C. H. Tan, K. C. Tan, and A. Tay, “Dynamic game difficulty scaling using adaptive
behavior-based AI,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 3, no. 4, pp.289–301, 2011.

[7] Unreal Engine Documentation, Retrieved October 04, 2021 from https://docs.
unrealengine.com/en-us

[8] Weka, October 04, 2021 from https://www.cs.waikato.ac.nz/ml/weka/
documentation.html

[9] Artificial Intelligence in Games A Survey of the State of the Art, Technical
Memorandum DRDC Ottawa TM 2012-084, August 2012

[10] Russell, Stuart J. Norvig, Peter, Artificial Intelligence : A Modern Approach,
Pearson Education Limited, Malaysia

[11] Ian Millington, John Funge, Artificial Intelligence for Games (2nd. ed.), Boca
Raton.

https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://www.cs.waikato.ac.nz/ml/weka/documentation.html
https://www.cs.waikato.ac.nz/ml/weka/documentation.html

	Abstract
	1 INTRODUCTION
	2 GAMEPLAY AND GAME ELEMENTS
	3 DATA COLLECTION
	4 DATA ANALYSIS & VISUALIZATION
	4.1 DECISION TABLES
	4.2 UNREAL ENGINE VISUALIZATION

	5 EVALUATION
	6 SCOREBOARDING
	7 FUTURE WORKS
	8 CONCLUSION
	Acknowledgments
	References

